AI should not be a black box - FT中文网
登录×
电子邮件/用户名
密码
记住我
请输入邮箱和密码进行绑定操作:
请输入手机号码,通过短信验证(目前仅支持中国大陆地区的手机号):
请您阅读我们的用户注册协议隐私权保护政策,点击下方按钮即视为您接受。
FT商学院

AI should not be a black box

Spats at OpenAI highlight the need for companies to become more transparent

Sam Altman, chief executive of OpenAI. Researchers once released papers on their work, but the rush for market share has ended such disclosures

Proponents and detractors of AI tend to agree that the technology will change the world. The likes of OpenAI’s Sam Altman see a future where humanity will flourish; critics prophesy societal disruption and excessive corporate power. Which prediction comes true depends in part on foundations laid today. Yet the recent disputes at OpenAI — including the departure of its co-founder and chief scientist — suggest key AI players have become too opaque for society to set the right course.

An index developed at Stanford University finds transparency at AI leaders Google, Amazon, Meta and OpenAI falls short of what is needed. Though AI emerged through collaboration by researchers and experts across platforms, the companies have clammed up since OpenAI’s ChatGPT ushered in a commercial AI boom. Given the potential dangers of AI, these companies need to revert to their more open past.

Transparency in AI falls into two main areas: the inputs and the models. Large language models, the foundation for generative AI such as OpenAI’s ChatGPT or Google’s Gemini, are trained by trawling the internet to analyse and learn from “data sets” that range from Reddit forums to Picasso paintings. In AI’s early days, researchers often disclosed their training data in scientific journals, allowing others to diagnose flaws by weighing the quality of inputs.

Today, key players tend to withhold the details of their data to protect against copyright infringement suits and eke out a competitive advantage. This makes it difficult to assess the veracity of responses generated by AI. It also leaves writers, actors and other creatives without insight into whether their privacy or intellectual property has been knowingly violated.

The models themselves lack transparency too. How a model interprets its inputs and generates language depends upon its design. AI firms tend to see the architecture of their model as their “secret sauce”: the ingenuity of OpenAI’s GPT-4 or Meta’s Llama pivots on the quality of its computation. AI researchers once released papers on their designs, but the rush for market share has ended such disclosures. Yet without the understanding of how a model functions, it is difficult to rate an AI’s outputs, limits and biases.

All this opacity makes it hard for the public and regulators to assess AI safety and guard against potential harms. That is all the more concerning as Jan Leike, who helped lead OpenAI’s efforts to steer super-powerful AI tools, claimed after leaving the company this month that its leaders had prioritised “shiny products” over safety. The company has insisted it can regulate its own product, but its new security committee will report to the very same leaders.

Governments have started to lay the foundation for AI regulation through a conference last year at Bletchley Park, President Joe Biden’s executive order on AI and the EU’s AI Act. Though welcome, these measures focus on guardrails and “safety tests”, rather than full transparency. The reality is that most AI experts are working for the companies themselves, and the technologies are developing too quickly for periodic safety tests to be sufficient. Regulators should call for model and input transparency, and experts at these companies need to collaborate with regulators.

AI has the potential to transform the world for the better — perhaps with even more potency and speed than the internet revolution. Companies may argue that transparency requirements will slow innovation and dull their competitive edge, but the recent history of AI suggests otherwise. These technologies have advanced on the back of collaboration and shared research. Reverting to those norms would only serve to increase public trust, and allow for more rapid, but safer, innovation.

版权声明:本文版权归FT中文网所有,未经允许任何单位或个人不得转载,复制或以任何其他方式使用本文全部或部分,侵权必究。

对话Otter.ai的梁松:我们可以从会议和对话中获取有价值的数据

这家会议转录初创公司的联合创始人认为,我们甚至可以用虚拟形象代替自己进行工作互动。

朔尔茨迎来自己的“拜登时刻”

德国总理受到党内压力,要求其效仿美国总统拜登退出竞选。

欧盟极右翼党团在气候和高层任命问题上获得更多支持

欧洲议会中右翼议员正越来越多地与极右翼联手瓦解该集团的绿色议程,并推动更严格的移民限制措施。

毛利人对新西兰后阿德恩时代的民粹主义转向感到愤怒

卢克森的保守党政府推翻了前总理的许多进步政策。

Lex专栏:英伟达令人炫目的增长与每个人都息息相关

这家芯片巨头的盈利对美国股票投资者来说是一件大事,这不仅仅是因为其3.6万亿美元的市值。

欧洲比以往任何时候都更需要企业增长冠军

欧洲正在急切地寻找企业增长冠军,FT-Statista按长期收入增长对欧洲企业进行的首次排名展示了这方面的可能性。
设置字号×
最小
较小
默认
较大
最大
分享×